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Comparison of the Power and Accuracy of Biallelic and Microsatellite
Markers in Population-Based Gene-Mapping Methods
Momiao Xiong and Li Jin
Human Genetics Center, University of Texas—Houston Health Science Center, Houston

Summary

Because of their great abundance and amenability to
fully automated genotyping, single-nucleotide polymor-
phisms (SNPs) and simple insertion/deletion are emerg-
ing as a new generation of markers for positional clon-
ing. Although the efficiency and cost associated with the
markers are important in the mapping of human disease
genes, the power to detect the linkage between the
marker and the disease locus, as well as the accuracy of
the estimation of the map location of the disease gene,
dictate the selection of the markers. Both the power and
the accuracy depend not only on the type of the markers
but also on other factors, such as the age of the disease
mutation, the magnitude of the genetic effect, the
marker-allele distribution in the population, mutation
rates of marker loci, the frequency of the disease allele,
the recombination fraction, and the methods for map-
ping the human disease genes. In this article, we develop
a mathematical framework and the analytical formulas
for calculation of the power and the accuracy and in-
vestigate the impact that the aforementioned factors
have on the power and the accuracy, by using two pop-
ulation-based gene-mapping methods—likelihood-based
linkage-disequilibrium mapping and the transmission/
disequilibrium test, for both biallelic SNPs and micro-
satellites. These studies provide not only guidance in
selection of the markers and in the design of the sample
scheme for positional cloning but also insight into the
biological bases of the mapping of human disease genes.

Introduction

Positional cloning has emerged as one of the major tools
for identification of genes involved in various human
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diseases for which the biochemical nature is unknown
(Collins 1992, 1995). It pinpoints disease genes in the
human genome by testing the linkage between the mark-
ers and the tentative disease locus.

Genetic markers play an important role in the local-
ization of human disease loci in positional cloning. Mi-
crosatellites, referred to as the “second-generation mark-
ers,” have been the markers of choice since 1989, and
several thousands such polymorphic markers have been
developed (Litt and Luty 1989; Weber and May 1989;
Edwards et al. 1992; Weissenbach et al. 1992; Gyapay
et al. 1994; Dib et al. 1996). Characterized by high levels
of heterozygosity and by a large number of alleles, such
markers provide ideal tools for pedigree-based linkage
analysis. Their applications have led to the identification
of the genes involved in many monogenic and a few
polygenic diseases (Collins 1995). However, this recent
advent of mutation detection and highly efficient ge-
notyping technologies (Oefner and Underhill 1995; Chee
et al. 1996) has prompted the emergence of a new gen-
eration of markers mostly based on single-nucleotide
polymorphisms (SNP) and simple insertion/deletion (Jin
et al. 1995; Kwok et al. 1996; Wang et al. 1998). Al-
though SNP markers, usually biallelic, are relatively less
polymorphic than microsatellites, their great abundance
and accessibility to high-throughput low-cost automated
genotyping technologies may eventually lead to the re-
placement of microsatellites in positional cloning (Jin et
al. 1995).

The essence of the mapping of human disease genes
is to identify genomic regions that cosegregate with dis-
ease traits either in pedigrees or in populations, while
excluding the rest of the genome, on the basis of the
presence of meiotic recombinations between markers
and diseases loci. On the basis of the source of infor-
mation, statistical approaches to gene-mapping methods
can be classified into two categories: pedigree-based
methods and population-based methods. The former
group of approaches include those using recombination
information derived at the pedigree level, such as clas-
sical linkage analysis (Morton 1955; Ott 1991) and sib-
pair analysis (Risch 1990a, 1999b, 1990c). The latter
group of approaches, which includes the various types
of linkage-disequilibrium method (LDM [Bodmer
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1986]) and the transmission/disequilibrium test (TDT
[Spielman et al. 1993]), derive recombination informa-
tion at the population level.

Although the efficiency and cost of positional cloning
associated with certain types of markers are important,
the statistical power to detect the linkage between the
markers and the diseases locus and/or the accuracy in
the estimation of the map location of the disease loci
dictates the selection of the markers. The former is es-
sential in a genomewide scan, whereas the latter depicts
the usefulness of markers in fine-scale mapping, and both
of them depend on the statistical methods employed for
gene mapping. Therefore, the comparison of biallelic
SNP markers and microsatellites is only meaningful in
the context of each particular method. The purposes of
this report are (1) to compare the statistical power of
biallelic markers in the detection of the presence of dis-
ease loci, versus that of microsatellites in two popula-
tion-based gene-mapping methods, the LDM and the
TDT; and (2) to compare the accuracy of biallelic mark-
ers in the estimation of the map location of disease loci,
versus that of microsatellites in the population-based
fine-scale mapping method, the LDM.

The high levels of variation associated with micro-
satellites are introduced by their high mutation rates (Ed-
ward et al. 1992; Weber and Wong 1993). This feature
of microsatellite markers makes them ideal markers for
pedigree-based linkage analyses, because of the abun-
dance of heterozygotes in the population. Concerns have
been raised about the application of such markers in
population-based linkage analyses, including those used
in whole-genome scan and in fine-scale mapping in
which the mutation rate of a marker becomes compa-
rable with the recombination rate between the marker
and the disease locus (Jin et al. 1995). In contrast, bial-
lelic SNP markers have very low mutation rates (Li
1997), and, in fact, the probability of recurrent and for-
ward-backward mutation can generally be ignored. This
group of markers, intuitively, make ideal markers for
population-based mapping approaches.

Both the power and the accuracy of each population-
based method depend on the age of the disease mutation,
the magnitude of genetic effect of the disease allele, the
type of markers, the allele-frequency distribution at the
marker locus and at the disease locus in the population,
and the recombination fraction between these two loci.
These factors play an important role in determining the
power as well as the cost of mapping projects. Therefore,
in this report, studies are also conducted (1) to evaluate
the impact of these factors on both the power and the
accuracy of each method using certain types of markers
(either biallelic SNP markers or microsatellite markers)
and (2) to provide guidance to the design of disease
gene–mapping projects. For convenience of presenta-
tion, throughout the paper we make the following as-

sumptions: (1) the population is homogeneous; (2) mat-
ing is random in the population, and there is a constant
population size during evolution; (3) generations are
nonoverlapping; (4) all alleles at the disease locus are
selectively neutral; (5) there are no phenocopies; and (6)
only a single-gene disease model is considered.

Comparison of Power for Biallelic SNPs and
Microsatellite Markers, in the LDM

The LDM is emerging as one of the major fine-scale
tools in the mapping of genes involved in genetic diseases
(Hästbacka et al. 1992, 1994; Jorde 1995; Kaplan et al.
1995; Xiong and Guo 1997). The LDM localizes disease
loci when allele-frequency distributions of nearby mark-
ers differ between patients and controls. When a disease
mutation is first introduced into a population, it creates
a complete disequilibrium between the disease locus and
its nearby marker locus. In subsequent generations, the
disequilibrium reduces, because of recombinations be-
tween the markers and the disease locus. The degree of
the linkage disequilibrium between a marker and the
disease locus reflects the distance between the marker
and disease locus and therefore can be used to map the
location of the disease locus.

We consider a disease locus with two alleles, a disease-
predisposing allele, , and an alternative allele,D � D1

, with allele frequencies pD and pn, respectively,D � n2

and a marker locus M with alleles Mi, , hav-i � 1, ) ,m
ing allele frequencies pi ( ). Let and bemS p � 1 p pi�1 i i id n

the frequency of the marker allele Mi on the haplotypes
with allele D and on the haplotypes with allele n, re-
spectively. Then, , , andp(M D) � p p p(M n) � p pi i D i i nd n

,where p(MiD) and p(Min) are the fre-p � p p � p pi i D i nd n

quencies of the haplotypes MiD and Mi, respectively. If
alleles Mi and D occur independently of each other, then
haplotype MiD will occur at frequency pipD, and the
alleles are said to be in linkage equilibrium.

Assume that the respective penetrance of the geno-
types DD, Dn, and nn at the disease locus are f11, f12,
and f22, respectively, with for recessivef � f � f � 011 12 22

( and ), additive ( , , andxf � x f � f � 0 f � x f �11 12 22 11 12 2

), and dominant ( and ) casesf � 0 f � f � x f � 022 11 12 22

, respectively. Let v be the recombination(0 ! x � 1)
fraction between the marker locus and the disease locus.
Furthermore, let TM denote an allele transmitted from
a parent to an affected child (A). Then (Sham and Curtis
1995),

p(TM � M FA) � p [1 � B(1 � v)(d � 1)] , (1)i i 1i

where

2[(f � f )p � (f � f )p p ]11 22 D 12 22 D nB � , (2)2 2(f p � 2f p p � f p )11 D 12 D n 22 n
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and , a measure of linkage disequilib-d � p(M D)/p p1i i i D

rium between the marker locus and the disease locus.
Because of evolutionary forces such as random drift and
recombination, the frequency of the haplotype MiD is a
random variable. Thus we have (Xiong and Guo 1997)

p (0)i �vt �vtdE[d ] � e � 1 � e , (3)1i pi

where is the frequency of the marker allele Mi inp (0)id

the disease population at the moment of the occurrence
of the most recent disease mutation and is determined
by disease-marker association patterns. For a single dis-
ease mutation, if we assume that M1 is an associated
allele with the disease mutation, we have andp (0) � 11d

, . In general, however, for multiplep (0) � 0 i � 2, ) ,mid

disease mutations, the number of alleles associated with
the disease mutations may be 11, and ,p (0) i �id

, may not be 0. For simplicity of presentation,2, ) ,m
the calculations throughout this report are made on the
assumption that there is a single disease mutation, al-
though the theory can be extended to multiple disease
mutations. Let be the observed number of the allelekid

Mi transmitted from a heterozygous parent to the af-
fected children and let . LetTp(t) � [p , ) ,p ] m (v) �1 m id d

. Then, from equations (1), (2), andE[p(TM � M FA)]i

(3) it follows that .�vtm (v) � p � B(1 � v)[p (0) � p ]ei i i id

The likelihood function for an LDM using a nuclear
family with two parents and an affected child is given
by

m

kidl(v) � �m (v) . (4)i
i�1

It can be seen from the this formula that the likelihood
function is related to the frequencies of the marker alleles
in the populations, the penetrance and the frequency of
the disease allele, the recombination fraction between
the marker and the disease loci, and the age of the disease
mutation. This likelihood function allows us to study
the power of the LDM, analytically, as will be demon-
strated later in this article. The traditional likelihood
function for the LDM proposed by Kaplan et al. (1995)
and Xiong and Guo (1997) uses a sample of unrelated
individuals. It can be shown that this likelihood function
is equivalent to that proposed by Kaplan et al. (1995),
when the disease mutation is recessive (for proof, see
Appendix A).

The power to detect the disease gene, defined as the
probability that the disease-susceptibility loci will be de-
tected, is an important index for evaluation of the per-
formance of mapping methods for any given type of
markers. Our methods for calculating the power are
based on the asymptotic distribution of the test statistic.

The LDM uses the likelihood ratio as a test statistic,
which is defined as

max l(v)
vG(v) � 2 log ,

1l( )2

where all logarithms are base e unless otherwise indi-
cated. Since only values of are admissible, under1v � 2

the null hypothesis , asymptotically,1H :v � G(v) ∼0 2

. Note that the only situation in which the LDM has1 2x(1)2

1 df is when all parameters (such as the age of the disease
mutation and the initial distribution of the marker allele
in the disease population) are known; if the parameters
in the model are unknown, then the df of the afore-
mentioned likelihood ratio–based LDM test statistic will
be the number of parameters to be estimated.

Since 2G(v) is distributed as a , the expected non-2x(1)

centrality parameter lm(v), where the subscript m de-
notes the number of marker alleles, is given by 2G(v).
To obtain the explicit formula for lm(v), we assume that
there are no mutations at the marker locus. This as-
sumption will be released in the examples presented later.

Since , even for a young disease-causing muta-1v � 2

tion—for example, generations— �vtt � 20 a � e �
. Thus, , . Note that1�10e � .000045 m ( ) ≈ p i � 1, ) ,mi i2

, where N is the number of parents. ItE[k ] � Nm (v)i id

follows from equation (4) that

m1 1
E log l(v) � log l �E k [log m (v) � log m ( )][ ( )] � i i id{ }2 2i�1

m
m (v)i� Nm (v) log .� i [ ]1i�1 m ( )i 2

If we assume that there is no mutation at the marker
locus, the expected value of the noncentrality parameter
lm(v) can be approximated by

l (v) ≈ 2E[G(v)]m

1
� 4E log l(v) � log l[ ( )]

2
m

m (v)i�4N m (v) log� i 1i�1 m ( )i 2

m [p (0) � 1]id≈ 4N p 1 � B(1 � v) a� i{ }pi�1 i

[p (0) � 1]id# log 1 � B(1 � v) a{ }pi

m 2[p (0) � p ]i i2 2 2 d� 4NB (1 � v) a . (5)�
pi�1 i
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Figure 1 Expected noncentrality parameter, as a function of the
population frequency of the associated allele in the LDM. The param-
eters are set as follows: dominant disease, generations,t � 20 N �

, , and . Denote the population frequency500 u � v � .0001 v � 5 cM
of the associated allele by f. The population frequencies of other, non-
associated alleles are specified as , where m is the number of alleles.1�f

m�1
The unbroken, dashed, and the dot-dashed lines represent a biallelic
marker, a microsatellite marker with 4 marker alleles, and a micro-
satellite marker with 10 marker alleles, respectively.

If we assume that there is a single disease mutation, then
.1�p2 2 2 1l (v) ≈ 4NB (1 � v) am p1

To evaluate the impact that the type of markers has
on the power to detect a disease gene, we fix the sample
size, the age of the disease mutation, and the recombi-
nation fraction between the marker locus and the disease
locus. Under this condition, lm(v) depends only on the
initial values of the frequencies of the marker alleles in
the disease population and in the unaffected population.
For a single disease mutation, lm(v) depends only on
distribution of the associated allele in the unaffected
population and is not related to the type of markers used,
if we assume that there are no mutations at the marker
locus.

Clearly, lm(v) increases as p1 decreases. Since the num-
ber of marker alleles is related, to some extent, to the
marker-allele distribution in the unaffected population,
the number of marker alleles will have impact on both
lm(v) and, in turn, the power to detect the disease locus.
Let f(p1,),pm) be the density of the distribution of the
marker allele M1,),Mm in the population. We denote
the average of lm(v) over the distribution of m marker
alleles in the population by Lm(v).

)1 1�x 1�x � �x1 1 m�1

2 2 2 )L (v) � 4NB (1 � v) am � � �
0 0 0

m 2(p (0) � x )i id ) )# f(x , ,x )dx dx .� 1 m 1 mx1 i

In practice, it would be difficult to specify the density
function f(x1,),xm). However, if we assume that there
is both a single disease mutation and uniform marker-
allele distribution in the unaffected population—that is,

for each allele—then, with the uniform distribution1
m

of f(p1,),pm), the multiple integration in the formula
above can be avoided. Thus, for a biallelic marker,

, and, for a microsatellite marker2 2 2l (v) ≈ 4NB (1 � v) a2

with m alleles and with mutation being ignored,
. Clearly, the expected2 2 2l (v) ≈ (m � 1)4NB (1 � v) am

noncentrality parameter increases with the number of
alleles. Therefore, for the uniform marker-allele distri-
bution, a microsatellite marker has, in general, more
power than a biallelic marker, in the LDM. However,
when n biallelic markers cluster together, when the re-
combination among markers is negligible and we assume
that frequencies for all haplotype are identical, l (v) ≈m

. This can provide more power than is2 24nNB (1 � v)
provided by a microsatellite marker.

Figure 1 shows the expected noncentrality parameter,
lm(v) of , as a function of the population frequency2x(1)

of the associated allele, under the assumption that the
frequency of the disease allele is . Equation (5)p � .1D

is obtained by assuming no mutation at the microsatellite

marker locus. This assumption is released in the com-
puting power of microsatellites that is shown in figure
1, where and . As expected, lm(v)u � v � .0001 t � 20
decreases with the frequency of the allele associated with
the disease mutation, p1. In figure 1, lm(v) for a biallelic
marker with is represented by the unbrokenp � 1 � p2 1

line, whereas that for a microsatellite marker with
or ( , ) is represented1�p1m � 4 m � 10 p � i � 2, ) ,mi m�1

by the dashed line and the dot-dashed line, respectively.
Since the three curves are virtually indistinguishable, it
is quite clear that l(v) depends on neither the number
of alleles nor the frequencies of alleles not associated
with the disease mutation. In other words, the power to
detect a disease locus in the LDM is dictated by the
frequency of the allele associated with the disease mu-
tation, given that the mutation rate of the microsatellite
is small compared with the recombination fraction be-
tween the marker and disease loci.

Figure 2 shows the power as a function of the recom-
bination fraction between the marker and the disease
locus, for biallelic and microsatellite markers in the
LDM, given and . In figure 2, the powerst � 20 p � .1D

of a biallelic marker for , .5, and .1 are repre-p � .91

sented by the dotted, dashed, and dot-dashed lines, re-
spectively, whereas those of a microsatellite marker are
represented by the left, middle, and right unbroken lines,
each corresponding to three different allele frequencies.
Note that p3 is defined as frequency of the associated
allele for a microsatellite marker. When the frequency
of the associated allele is .5, the power of a microsatellite
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Figure 2 Power as a function of the recombination fraction in
the LDM. The parameters are set as follows: recessive disease, t �

, , and . The dashed, dotted, and dot-dashed20 N � 200 u � v � .0001
lines represent the power curves for the biallelic markers when the
population frequency of the associated allele is , , andp � .5 p � .91 1

, respectively. The left, middle, and right unbroken lines rep-p � .11

resent the power curves for the microsatellite when the population
frequencies of the allele are .1, .15, .5, .15, and .1; .2, .2, .2, .2, .2,
and .2 and .1, .1, .35, .35, and .1, respectively.

marker is slightly lower than that of a biallelic marker,
because of the presence of new mutations at the marker
locus.

In table 1, we consider both a recessive- and a dom-
inant- disease locus, with a disease-allele frequency of

and . The sample size is calculated forp � .1 v � 5 cMD

.8 power with significance level . Throughouta � .0001
the paper, Bi denotes the biallelic marker with population
frequency of the associated allele, and Mip � i # .11

denotes the microsatellite marker with population fre-
quency of the associated allele and with pop-p � i # .13

ulation frequency of the other, nonassociated1�p3p �j 4

alleles. We demonstrate that for, both biallelic and mi-
crosatellite markers, the sample size is sensitive to both
the age of the disease mutation and the frequency of the
associated allele in the population. For a dominant dis-
ease, the sample size dramatically increases for both bial-
lelic and microsatellite markers. The age of the disease
mutation has a large impact on the sample size. From
table 1 we can see that, in all cases, for , thet � 100
sample sizes necessary to achieve .8 power at v �

are impractical, for both biallelic and microsat-5 cM
ellite markers.

Next, we examine the sample-size requirement when
1,500 biallelic markers are available ( ). Thev � 2 cM
sample sizes required to reach .8 power (significance
level ), for various scenarios, are listed at thea � .0001
bottom of table 1, for the three-part assumption of initial
complete linkage disequilibrium between the marker and
disease loci, no mutations at the marker locus, and

as the frequency of the disease allele. Interest-p � .01D

ingly, the sample size (4,900) is manageable even for the
worst case in table 1: , dominant-disease muta-p � .51

tion, and .t � 100
The number of markers required for a genomewide

scan can be studied by computation of the largest re-
combination fraction allowed between the adjacent
markers, to achieve .8 power for a given sample size and
marker-allele distribution. The results for the LDM are
listed in table 2.

Comparison of Power for Biallelic and Microsatellite
Markers, in the TDT

The TDT detects the association between the markers
and the disease locus (Spielman et al. 1993) by com-
paring allele frequencies in patients with those in con-
trols provided by parents. Association between the
markers and disease loci may arise from either linkage
(with linkage disequilibrium) or, in the absence of link-
age, population stratification. The TDT exploits the in-
ternal controls provided by parents, to avoid association
that is due to artifacts—for example, population strat-
ification—and hence detects linkage between the mark-
ers and the disease locus.

For the convenience of discussion of the calculation
of power, we assume that the population studied is ho-
mogeneous. Let nij be the number of parents who trans-
mitted allele i to the affected child but did not transmit
allele j. The TDT for the multiple allele is defined as

2(n � n )ij ji2Z � �
var(n � n )!i j ij ji

2(n � n )ij ji≈ .�
n � n!i j ij ji

Let pij be the probability that alleles Mi are transmitted,
conditional on parental genotype MiMj. Since nij, i,j �

, follows a multinomial distribution, we have1, ) ,m
and 2E[n ] � 2Np j � var(n � n ) � 2N[p � p �ij ij ij ij ji ij ji

, where N is the number of families with par-2(p � p ) ]ij ji

ents and an affected child, including families with ho-
mozygous parents. From the formulas given by Sham
and Curtis (1995), the probabilities pij and pji are cal-
culated as and , wherep � p p d p � p p d d � 1 �ij i j ij ji i j ji ij

,B[(e � 1) � v(e � e )]1i 1j 1i

p [p (f � f ) � p (f � f )]D D 11 12 d 12 22B � ,2 2p f � 2p p f � p fD 11 D d 12 d 22

and are the linkage-disequilibrium parameterspiDe �1i p pD i

between the disease allele and the marker allele i. There-
fore, under the null hypothesis , Z2 is an1H :v � (d � 0)0 2

asymptotically central x2 distribution with df. Un-m(m�1)
2

der the alternative hypothesis of the existence of linkage
and linkage disequilibrium, Z2 is an asymptotically non-
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Table 1

Number of Parents Required to Achieve .8 Power with Significance Level , for Biallelica � .0001
and Microsatellite Markers in the LDM ( )u � v � 0

PARAMETERS

AND MARKER

NO. OF PARENTS REQUIRED, FOR

Recessive Disease Dominant Disease

t � 20 t � 50 t � 100 t � 20 t � 50 t � 100

, :v � 5 cM p � .1d

Biallelic:
B1 36 523 66,7000 110 1,800 238,800
B3 94 1,800 253,600 327 6,300 914,300
B5 194 4,000 590,000 711 14,000 2,000,000
B7 425 9,100 1,400,000 1,600 33,000 4,960,000
B9 1,600 35, 000 5,300,000 6,100 127,000 19,000,000

Microsatellite:
M1 36 529 60,000 111 1,780 215,000
M5 198 4,300 1,400,000 724 15,700 5,200,000
M9 1,800 68,000 6,000,000 6,900 248,000 7,200,000

, ; biallelic:v � 2 cM p � .01d

B2 43 98 307 110 220 590
B3 44 120 440 130 280 930
B5 50 170 1350 200 660 4,900

Table 2

Distance between Adjacent Biallelic Markers, to Achieve .8
Power in the LDM ( and )u � v � 0 p � .1d

SAMPLE

SIZE

DISTANCE (NO. OF MARKERS), FOR

t � 20 t � 50 t � 100

50 3.0 cM (1,000) 1.6 cM (1,875) .8 cM (3,750)
100 7.0 cM (429) 3.0 cM (1,000) 1.4 cM (2,143)
500 15.0 cM (200) 6.0 cM (500) 3.0 cM (1,000)
1,000 18.0 cM (167) 8.0 cM (375) 3.6 cM (833)

central x2 distribution with the following noncentrality
parameter:

2(p � p )ij ji2l � 4N .� 2j!i j ij

In Appendix B, we show that, when it is assumed that
there are no mutations at the marker locus, lm(v) is given
by

2
m p (0)i2 2 �2vt dl (v) ≈ 4NB (1 � 2v) e p � 1 . (6)�m i[ ]pi�1 i

For the single disease mutation, if it is assumed that the
marker allele M1 is an associated allele, then equation
(6) reduces .1�p2 2 �2vt 1l (v) ≈ 4NB (1 � 2v) em p1

Since the likelihood ratio–based LDM is a parametric
method whereas the TDT is a nonparametric one, the
LDM has, in general, a higher power than the TDT. This
is reflected by a subtle difference between the noncen-
trality parameters of the two methods: for the2(1 � v)
LDM versus for the TDT. When the marker is2(1 � 2v)
located very close to the disease locus, these two terms
are close to each other. In this case, the LDM and the
TDT will have a similar noncentrality parameter. For a
biallelic marker, both the LDM and the TDT have the
same df. For a microsatellite marker, although the pre-
viously discussed TDT test has df, as shown bym(m�1)

2

Sham and Curtis (1995), the TDT test, based on logistic
regression, has df. The df for the LDM dependsm � 1
on the number of parameters to be estimated. If the
number of unknown parameters increases, then the df

for the LDM increases. In addition, if , then the1v � 2

noncentrality parameter for the TDT is 0, but the non-
centrality parameter for the LDM is not. This may imply
that the TDT (but not the LDM) is still a valid test even
in the presence of a “spurious” linkage disequilibrium
that is created not by the linkage but by such artifacts
as the substructure of population.

To evaluate the performance of biallelic and micro-
satellite markers in the TDT, we assume the mutation
rates of at the microsatellite markers. Ta-u � v � .0001
ble 3 shows that the pattern of the sample sizes in the
TDT is similar to that in the LDM. The younger the
disease mutation, the smaller the sample sizes. For the
single disease mutation, the sample sizes depend on the
population frequency of the associated allele, regardless
of the type of the markers. In table 3, both biallelic and
microsatellite markers with the smallest population fre-
quency (.1) of the associated allele require the smallest
sample size.

Next we examine the performance of the biallelic and
microsatellite markers in the TDT, for the disease models
considered by Risch and Merikangas (1996)—that is,
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Table 3

Number of Nuclear Families Required to Achieve .8 Power with
Significance Level .0001, for Biallelic and Microsatellite Markers in
the TDT ( , , and )v � 5 cM u � v � .0001 p � .1d

MARKER

NO. OF NUCLEAR

FAMILIES REQUIRED, FOR

Recessive
Disease

Dominant
Disease

t � 20 t � 100 t � 20 t � 100

Biallelic:
B1 28 75,000 119 334,000
B3 48 140,000 212 623,000
B5 94 283,000 422 1,260,000
B7 250 761,000 1,127 3,393,000
B9 1,992 6,000,000 8,981 27,000,000

Microsatellite:
M1 35 59,000 103 193,000
M5 254 1,700,000 791 5,600,000
M9 9,300 2,000,000 28,000 7,300,000

Table 4

Sample Size Required to Achieve .8 Power with Significance Level
.0001, for Biallelic and Microsatellite Markers in the TDT (v �

and )5 cM u � v � .0001

MARKER

AND pD

SAMPLE SIZE REQUIRED, FOR

r � 4 r � 2

t � 20 t � 100 t � 20 t � 100

Biallelic:
B1:

.1 488 1,400,000 3,000 9,000,000

.5 75 208,000 237 675,000
B3:

.1 888 2,600,000 5,700 17,000,000

.5 133 389,000 427 1,300,000
B5:

.1 1,780 5,309,000 11,480 34,309,000

.5 263 785,000 853 2,544,000
B7:

.1 4,775 14,296,000 30,850 92,123,000

.5 701 2,114,000 2,284 6,852,000
B9:

.1 38,029 113,900,000 245,700 733,800,000

.5 5,582 16,840,000 18,190 54,580,000
Microsatellite:

M1:
.1 319 676,500 1,624 3,853,000
.5 72 130,740 176 351,860

M5:
.1 1,398 4,938,000 7,825 28,194,000
.5 279 950,000 734 2,564,000

M9:
.1 29,868 6,270,000 192,000 35,767,000
.5 4,384 1,207,000 14,280 3,257,000

under the assumption that the genotypic relative risk for
individuals of genotype Dn is g times greater than that
for individuals with genotype nn and that the risk for
individuals with genotype DD is g2. The sample sizes
required under such disease models are summarized in
table 4. The sample size increases as the complexity of
the disease, the age of the disease mutation, and the
population frequency of the associated allele increase.

The age of the disease mutation and the magnitude
of gene effects are primary determinant of our ability to
map human disease genes. On the basis of the data in
table 4, we can see that, with , the sample sizesg � 4
for the TDT are still practically workable when the dis-
ease mutation is assumed to have occurred 400 years
ago.

Comparison of the Accuracy of the Estimation of the
Disease-Gene Location by Biallelic and Microsatellite
Markers, in Fine-Scale Mapping

The purpose of fine-scale mapping is to localize the
disease gene as accurately as possible. Therefore, to eval-
uate the performance of biallelic and microsatellite
markers in fine-scale mapping, we compare the accuracy
of the estimation of the disease-gene location by biallelic
markers and that by multiallelic markers. Gene-mapping
accuracy in the following discussion is defined as the
width of the confidence interval (in centimorgans) at a
certain confidence level.

The LDM can be used for fine-scale mapping. Let mi(v)
be the conditional probability that allele Mi is trans-
mitted from the parents to the child, as defined above
(see Comparison of Power for Biallelic SNPs and Mi-
crosatellite Markers, in the LDM), given that the child
is affected. Let , , andTX � [x , ) ,x ] j � 1, ) ,Nj 1j mj

m

xijf(X ,v) � �m (v) ,j i
i�1

where

1 if jth child has transmitted allele i
x � .ij {0 otherwise

The likelihood function l(v) is defined as

N

l(v) � � f(X ,v) .j
j�1

Let be the maximum-likelihood estimate of v—thatv̂n

is,

ˆl(v ) � max l(v) .n
v

On the basis of standard statistical theory (Serfling
1980), the level confidence interval of v is given1 � a

by , where z(p) denotes
1 1� �ˆ ˆa a
2 2v � z n j � v � v � z n jn 1� n 1�2 2
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Figure 3 Expected length of the confidence interval, as a function
of the age of the disease mutation, for biallelic and microsatellite mark-
ers with , for a recessive disease and a given sample size:v � 5 cM

. The frequency of the disease allele is assumed to beN � 200 p �d

. The unbroken and dashed lines represent the confidence-interval.1
curves for the biallelic markers when the population frequency of the
associated allele is and those of the microsatellite are .225,p � .11

.225, .1, .225, and .225.

Figure 4 Expected length of the confidence interval, as a function
of the recombination fraction. We assume that , , andt � 100 p � .001d

. The unbroken and dashed lines represent the confidence-N � 200
interval curves for the biallelic markers when the population frequency
of the associated allele is , for recessive- and dominant-diseasep � .11

models, respectively; the dot-dashed and dotted lines represent the
confidence-interval curves for the biallelic markers when the popula-
tion frequency of the associated allele is and ,p � .9 p � .91 1

respectively.

the pth quantile of the standard normal distribution and
j is calculated as in Appendix C.

For simplicity in this discussion, we assume that there
is no mutation for microsatellite markers. In Appendix
C, we show that

m 21 [p (0) � p ]i i2 2 �2vt d≈ B [1 � t(1 � v)] e .�2j pi�1 i

If we assume that there are a single disease mutation
and an associated allele M1, then reduces1

2j

1 1 � p12 2 �2vt≈ B [1 � t(1 � v)] e .2j p1

Clearly, j2 depends on the age of the disease mutation,
the recombination fraction between the marker and the
disease loci, the initial values of the marker-allele fre-
quencies in the disease population, the disease model,
and the population’s marker-allele distribution. Again,
like the power in the detection of linkage, the accuracy
of the LDM depends on the frequency of the associated
allele, p1, in the population but not on the type of the
markers used, when other factors are identical.

Figure 3 shows that the expected length of the con-
fidence interval decreases with the age of the disease
mutation, for both biallelic and microsatellite markers,
when and , for a recessive disease.v � .005 N � 200
Figure 3 shows that the curve for biallelic markers and
that for microsatellite markers are indistinguishable,

which implies that the confidence interval depends on
the population frequency of the associated allele, re-
gardless of the type of markers. It is interesting to note
that a younger disease mutation is associated with a
higher power of being detected but with a lower accu-
racy in the estimation of the gene’s map location. This
complicates our task. Genomewide scanning and fine-
scale mapping of a disease gene are two different phases
of a study. A real study is less likely to collect data from
a young population for a genomewide scan but data
from an old population for fine-scale mapping. It seems
reasonable to collect data from a young popula-
tion—say, an isolated population that was founded by
a small number of individuals not long ago—to start a
genomewide scan. After a gene has been mapped to a
specific region(s) in the genome, more markers in those
candidate regions could be employed, for fine-scale map-
ping, to increase the accuracy.

Figure 4 illustrates the expected length of the confi-
dence interval, as an increasing function of the recom-
bination fraction. When markers are distant from the
disease locus, the linkage disequilibrium between the
marker and the disease locus decreases. The information
about the location of the disease gene contained in the
marker will be less, and, hence, the confidence interval
will increase as the recombination fraction increases.
From the data in figure 4 we can also see that the con-
fidence interval depends on the mode of inheritance (as
table 5 also illustrates). The confidence interval for a
dominant disease is larger than that for a recessive dis-
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Table 5

Sample Size for Biallelic and Microsatellite Markers in Fine-
Scale Mapping by the LDM ( and ), for av � .5 cM t � 200
Confidence Interval of 200 kb

MARKER

SAMPLE SIZE REQUIRED, FOR

Recessive
Disease

Dominant
Disease r � 4 r � 2

Biallelic:
B1 215 405 784 4,101
B3 357 760 1,677 11,654
B5 615 1,397 3,284 25,250
B7 1,214 2,884 7,035 56,973
B9 4,214 10,320 25,786 215,590

Microsatellite:
M1 236 434 824 4,221
M5 728 1,625 3,771 28,531
M9 5,475 13,349 33,244 276,780

ease. The frequency of the associated allele is also a
factor that influences the confidence interval. The con-
fidence interval increases as the frequency of the allele
that is associated with the disease increases.

Table 5 shows the sample sizes required to achieve the
confidence interval of 200 kb with a 95% confidence
level, for generations and . Table 5 il-t � 200 v � .005
lustrates that the sample size increases as the population
frequency of the associated allele increases, for both bial-
lelic and microsatellite markers. Also from the data
shown in table 5, it can be noted that, with the same
population frequency of the associated allele, microsat-
ellite markers require a sample size slightly larger than
that required by biallelic markers.

Discussion

Although the efficiency and cost of gene mapping as-
sociated with certain types of markers are important, the
power to detect the linkage between the marker and the
disease loci and/or the accuracy in estimation of the map
location of the disease loci dictates the selection of the
markers in the mapping of the genes involved in various
human diseases. In this report, we have investigated how,
in the study of an isolated homogeneous population,
various factors—such as the type of the markers, the
population frequencies of the marker alleles, the recom-
bination fractions between the marker and disease loci,
the mode of inheritance, and the age of the disease mu-
tations—affect (1) the power to detect the disease gene,
in genomewide scanning, and (2) the accuracy of the
estimation of the gene’s map location, in the TDT and
in the LDM. This study provides much-needed guidance
for selection—both of the genetic markers and of the
study design—in the mapping of complex diseases, dur-
ing the process of positional cloning.

It should be noted that such a study was carried out
under the simplest and probably the most favorable as-
sumptions for the mapping of human disease genes: (1)
the population considered is homogeneous; (2) mating
within the population is random, and the population
size remains constant during evolution; (3) generations
are nonoverlapping; (4) all alleles at the disease locus
are selectively neutral; (5) there are no phenocopies; and
(6) only a single-gene disease model, in which a disease
is caused by mutations that occur within a single gene,
is considered. These assumptions may be easily violated
in real studies. However, the purpose of this report is to
develop some simple analytic formulas for the analysis
of gene-mapping methods in the simple cases, which will
provide insights into the biological bases of gene-map-
ping methods and will facilitate investigation of the im-
pact that both the type of the markers and other factors
have on the power and resolution of the mapping of
human disease genes.

To study the power to detect linkage, we first devel-
oped simple analytical formulas for calculation of both
the expected noncentrality parameter in x2 and the Fisher
information index of the estimator of the gene’s map
location, on the basis of population-genetic theory as-
suming no mutation at the marker loci. As expected,
these formulas clearly describe how the aforementioned
factors affect the power and the accuracy of the TDT
and the LDM. Then, the power to detect linkage was
calculated, with allowance for mutations of microsatel-
lites. These results further demonstrated that the results
for the markers with no mutations also hold for the
markers with mutations.

The TDT and the LDM show very similar patterns of
the dependence of the power on the aforementioned fac-
tors. First, the likelihood ratio–based LDM is a para-
metric method, and the TDT is a nonparametric method
based on linkage disequilibrium. When they use the same
family structure collection of the data, as in this study,
the noncentrality parameter for the LDM and that for
the TDT differ only by one term; when the markers are
close to the disease locus, the difference between the two
methods virtually disappears. For biallelic markers, both
the LDM and the TDT will have the same df. In this
case, the LDM and the TDT will have similar power for
the markers close to the disease locus. Furthermore, the
formula of the noncentrality parameter for the TDT
demonstrates that the TDT is still a valid test in the
presence of the admixture and stratification of popula-
tions but that the LDM is not. This implies that the TDT
is more robust than the LDM. Unlike the LDM, the TDT
also does not need to specify the model. Therefore, the
TDT really combines the virtue of simplicity, robustness,
and elegance (Curtis 1997).

Second, the power and the accuracy in the TDT and
the LDM do not depend on the type of the markers but,
rather, on the population frequency of the associated
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allele at the marker locus. A marker with a lower pop-
ulation frequency of associated alleles provides higher
power and accuracy.

Third, the power and the accuracy in the LDM and
the TDT are reduced by the presence of mutations at
the marker loci. In the stepwise-mutation model describ-
ing the mutational process at microsatellite loci, the
power and the accuracy of the microsatellite markers
with mutation are generally lower than those of biallelic
SNP markers. However, the difference between those
two types of markers, in terms of their power and ac-
curacy, are minor, given that the genetic distance between
the marker and disease loci is quite large. This difference
may become significant when the distance between the
marker and disease loci becomes small—say, !0.1 cM,
or 100 kb—when the mutation rate of the microsatellites
is not negligible compared with the recombination rate
(data not shown).

It is not straightforward to compare the power and
the accuracy, in the LDM and the TDT, between biallelic
SNP markers and microsatellite markers. For a given
population frequency of the associated allele, the power
of an SNP marker is slightly higher than that of a mi-
crosatellite locus, especially when the distance between
the marker and disease loci is small. However, a micro-
satellite tends to have alleles with lower frequencies, as
a consequence of having a larger number of alleles.
Therefore, the probability that a microsatellite locus will
have an associated allele with lower population fre-
quency is higher than that of a biallelic SNP marker.
When the population frequency of the associated allele
is unknown, and when the distance between the marker
and disease locus is identical and reasonably large, a
microsatellite locus is probably a better choice for the
population-based approaches to the mapping of human
disease genes. However, when a much larger number of
biallelic SNP markers can be typed efficiently, especially
when several SNP markers can be used to generate hap-
lotype information at a small genomic region of interest,
SNP markers outperform microsatellite markers.

Fourth, the power and the accuracy in the LDM and
the TDT depend on the age of the most recent disease
mutation. Younger populations provide more power but
less accuracy. In a real study, we suggest that data be
collected from young populations, to start a genomewide
scan. After genes have been mapped to specific regions
of the chromosomes, more markers should be typed in
the promising regions, for fine-scale mapping, to over-
come the problem of low resolution caused by a young
population.

Fifth, the power and the accuracy in the LDM and
the TDT depend on the mode of inheritance. The power
and the accuracy will decrease when the complexity of
the disease model of inheritance increases. Therefore, the

mapping of complex-trait loci is a difficult task and re-
quires a large sample size and a dense genetic map.

Studies of the genetics of complex diseases are cur-
rently underway. Many of the alleles associated with
complex diseases are likely to be very common but to
have low penetrance. The large-scale discovery and scor-
ing of SNPs represents major efforts to facilitate pop-
ulation-based methods for genetic studies of complex
diseases (Collins et al. 1997). In this report, to simplify
our analysis, we have assumed that the population is
homogeneous population, and most calculations were
performed for a single disease mutation. However, a
population may have substructures. Both population
substructure and gene flow among the subpopulations
should be considered in our model. Furthermore, com-
plex diseases with multiple disease loci should also be
considered.
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Appendix A

Clearly, for a recessive disease, from equation (1) we
derive

m (v) � vp � (1 � v)E[p (t � 1)] , (A1)i i id

where t is the age of the disease mutation in the affected
child. It can be shown that

t�1 t�1E[p (t � 1)] � (1 � v) p (0) � [1 � (1 � v) ]p .i i id d

(A2)

Substitution of in equation (A2) into equation (A1)pid

yields , which ist tm (v) � (1 � v) p (0) � [1 � (1 � v) ]pi i id

the frequency of the marker allele Mi in the current dis-
ease population—that is, the probability of transmission
of the marker allele Mi to the affected child is equal to
the frequency of transmission of the marker allele Mi in
the randomly sampled disease population. Therefore, the
traditional likelihood function for a linkage-disequilib-
rium map (Kaplan et al. 1995; Xiong and Guo 1997) is
the special case of the formulation above.

Appendix B

Note that, in the absence of mutation at the marker
locus, is expressible asp (t)id

pi
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p (t) p (0)i i �vtd d� 1 � � 1 e .[ ]p pi i

Thus, after some calculations, we obtain

p (0) p (0)i j �vtd dE[e � e ] � � e1i 1j [ ]p pi j

and

p (0) p (0)i j �vtd dE[e � e � 2] � � 1 � � 1 e ,1i 1j [ ]p pi j

which implies that

p (0) p (0)i j �vtd dE[p � p ] � p p (1 � 2v)B � eij ji i j [ ]p pi j

and

p (0) p (0)i j2 d dE[j ] � 2Np p 2 � B � 1 � � 1ij i j [ ]{ p pi j

p (0) p (0)i j2 2 �2vtd d�p p B (1 � 2v) � e .i j [ ] }p pi j

Therefore,

2[E(p ) � E(p )]ij ji2l (v) ≈ 4HN �m 2E(j )!i j ij

2 2 �2vt≈ 4HN 2B (1 � 2v) e[
2 2 �3vt 2 3# p b � B e (1 � 2v) p b� � ]i i i i

i i

2 2 �2vt 2≈4HNB (1 � 2v) e p b ,� i i
i

where . Similarly, we havep (0)idb � � 1 H ≈ 1 �i ipi

.2 2 �vtS p � BS p b ei i i i i

Appendix C

Note that, in the absence of mutation at the marker
locus, we have and�vtm (v) � p � B(1 � v)[p (0) � p ]ei i i id

. Thus,′ �vtm (v) � �B[1 � t(1 � v)][p (0) � p ]ei i id

m ′ 2[m (v)]iI(v) ��
mi�1 i

1 2m [p (0) � p ]i ip di
2 2 �2vt� B [1 � t(1 � v)] e �

p (0)�p�vt i idi�1 1 � B(1 � v)e pi

m

2 2 �2vt 2 �vt[ ]≈ B [1 � t(1 � v)] e p b 1 � B(1 � v)e b� i i i
i�1

m

2 2 �2vt 2≈B [1 � t(1 � v)] e p b .� i i
i�1
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